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Abstract

We consider the application of least-squares finite element models combined with spectral/hp methods for the nu-

merical solution of viscous flow problems. The paper presents the formulation, validation, and application of a spectral/

hp algorithm to the numerical solution of the Navier–Stokes equations governing two- and three-dimensional sta-

tionary incompressible and low-speed compressible flows. The Navier–Stokes equations are expressed as an equivalent

set of first-order equations by introducing vorticity or velocity gradients as additional independent variables and the

least-squares method is used to develop the finite element model. High-order element expansions are used to construct

the discrete model. The discrete model thus obtained is linearized by Newton�s method, resulting in a linear system of

equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a precon-

ditioned conjugate gradient method. Spectral convergence of the L2 least-squares functional and L2 error norms is

verified using smooth solutions to the two-dimensional stationary Poisson and incompressible Navier–Stokes equa-

tions. Numerical results for flow over a backward-facing step, steady flow past a circular cylinder, three-dimensional

lid-driven cavity flow, and compressible buoyant flow inside a square enclosure are presented to demonstrate the

predictive capability and robustness of the proposed formulation.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

During the past three decades considerable efforts have been directed towards the development of robust

computational procedures for fluid flow problems. However, in the context of fluid flow analyses, the finite

element method has yet to achieve the same level of acceptance as other numerical methods, such as (low

order) control-volume based methods. More recently, interest has shifted towards high-order accurate

numerical solutions of the Navier–Stokes equations and its here that spectral/hp finite element formulations
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have proven to be more efficient [1]. Encouraged by the success of spectral/hp methods in computational

fluid dynamics, we wish to combine these ideas with least-squares variational principles, which offer many

theoretical and computational advantages in the implementation of the corresponding finite element model

that are not present in the weak form Galerkin finite element model.

It is well known that application of the weak form Galerkin procedure to problems whose solutions can

be characterized as global minimizers results in global minimization of quadratic functionals, such is the

case for linear elasticity problems; see [2]. In this case, given a conforming discretization, the finite element

solution is an orthogonal projection of the exact solution onto the trial space, i.e., the finite element so-
lution is a minimizer of an energy functional on the trial space so that it represents the best possible ap-

proximation in the energy norm. Such a setting, hereafter referred to as a variational setting, is the most

favorable for a finite element approximation.

Failure to immediately recognize the link between global minimization of unconstrained convex

functionals and the success of the method for linear elasticity problems led to early attempts to extend

weak form Galerkin formulations beyond problems whose solutions could be characterized as uncon-

strained global minimizers. For example, problems of the saddle-point type, whose solution can be in-

terpreted as a constrained minimization of a convex functional by requiring adherence of the discrete
spaces to restrictive compatibility conditions; lack many of the attractive properties of the variational

setting. Implementation of weak form Galerkin finite element models without accounting for the re-

strictive conditions leads to the occurrence of spurious oscillations in the numerical solution. A typical

example is given by the primitive variable formulation of the Stokes problem for which the velocity and

pressure approximation spaces cannot be chosen independently and must satisfy an inf–sup condition

(see, e.g. [3]).

In the context of the Stokes and/or the Navier–Stokes equations, various finite element models at-

tempting to fully or partially recover some of the properties of the variational setting have been proposed,
and among them the Galerkin-least-squares and stabilized Galerkin methods have been extensively

researched (see, e.g. [4,5]).

In the past few years finite element models based on least-squares variational principles have drawn

considerable attention (see, e.g. [6,7]). In particular, given a partial differential equation or a set of partial

differential equations, the least-squares method allows us to define a convex, unconstrained minimization

principle so that a finite element model can be developed in a variational setting. Direct application of least-

squares principles to develop finite element models for the Navier–Stokes equations requires that the

piecewise polynomial functions be at least once continuously differentiable across element boundaries (C1

continuity). Early implementations failed to gain popularity because of this requirement. In practical im-

plementations of least-squares finite element models, the Navier–Stokes equations are transformed into an

equivalent first-order system. This allows the use of nodal/modal expansions that are merely C0 continuous

across element boundaries.

For practical reasons, we use L2-norms of the residuals of equations to define the least-squares func-

tional. Moreover, we can require the boundary conditions to be imposed either strongly or, alternatively, in

a weak sense through the least-squares functional. The latter will be exploited in the present study to treat

outflow boundary conditions. In order to fully emulate the variational setting, one must define a L2 least-
squares functional that is H 1-norm equivalent [7]. If this is achieved, the least-squares finite element

solution can be interpreted as an orthogonal projection in the Hilbert space with respect to problem de-

pendent inner products, and stability requirements such as inf–sup conditions will never arise. A notable

computational advantage of working in such a setting is that the resulting algebraic problem will have a

symmetric positive definite (SPD) coefficient matrix, which can be solved by using robust iterative methods,

such as preconditioned conjugate gradient methods.

Identifying norm equivalent functionals associated with a partial differential equation is not a trivial

task. We rely on the Agmon, Douglis, and Nirenberg (ADN) theory [8] for elliptic operators to identify
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appropriate spaces to define a least-squares functional that is norm-equivalent. First-order differential

operators that are homogeneous elliptic in the ADN sense allow the construction of a L2 least-squares

functional that is H 1-norm equivalent. For non-homogeneous elliptic first-order differential operators

(in the ADN sense), a norm-equivalent least-squares functional may also be constructed. However,

the least-squares functional will be in terms of computationally impractical norms which must be re-

placed by computable equivalents; perhaps at the expense of sacrificing properties of the variational

setting.

First-order systems that allow the construction of a L2 least-squares functional that is H 1-norm equiv-
alent are commonly referred to as H 1-coercive formulations. Such systems yield optimal error estimates

with respect to the H 1-norm for all variables and ensure the optimality of multiplicative and additive

multigrid methods [9], which could be used either as a solver or a preconditioner for the conjugate gradient

method.

The most popular transformation to an equivalent first-order system for the incompressible Navier–

Stokes equations is the vorticity based first-order system. In two dimensions the total number of variables is

only increased by one and this formulation has the benefit of directly solving for a quantity of physical

relevance, the vorticity. However, the velocity–pressure–vorticity first-order system is not H 1-coercive for
particular sets of boundary conditions (details are given in [7,10]) and therefore fails to completely emulate

a variational setting. Nevertheless, the formulation has had widespread acceptance, and in actual imple-

mentations performs exceptionally well [11,12]. Yet another approach is to introduce the stresses as in-

dependent variables. This leads to a stress based first-order system. In two dimensions the total number of

variables is increased by three; however, the velocity–pressure–stress first-order system is not H 1-coercive,

regardless of the choice of boundary conditions [7]. A third option is to introduce all components of the

gradient of the velocity vector field as independent variables. By adding additional constraints to weaken

the dependencies between variables this equivalent first-order system, hereafter referred to as the velocity
gradient based first-order system, is always H 1-coercive [9,13]. In two dimensions the total number of

variables is increased by four and this formulation has the added benefit to easily compute (in the post-

processing stage) physical quantities of interest that are linear combinations of the partial derivatives of the

velocity vector field, e.g., vorticity and stresses.

In the context of least-squares finite element formulations for the Navier–Stokes equations, predomi-

nantly low order nodal expansions have been used to develop the discrete finite element model. When the

formulation is not H 1-norm equivalent (sometimes referred to as a quasi-norm-equivalent or a non-equiv-

alent formulation), low order nodal expansions tend to lock and reduced integration techniques must be
used to obtain acceptable numerical results. When enough redundant degrees of freedom are constrained

the least-squares finite element solution using reduced integration yields a collocation finite element solu-

tion. However, the collocation solution may not always be reliable and the least-squares functional cannot

be used to measure the quality of the solution.

Even though a quasi-norm-equivalent or a non-equivalent formulation departs from the ideal mathe-

matical setting, it does not lead to disastrous results; as a violation of the inf–sup condition would, in a

mixed weak form Galerkin formulation. Motivation for this study arose from the resiliency of the least-

squares method to such departures from the mathematically ideal setting. Furthermore, we refrain from
using reduced integration techniques and it is through our work that we wish to advance the practice of full

integration and residual minimization through proper hp-refinement.

Jiang and Sonnad [14] implemented a p-version least-squares formulation for the numerical solution of

the stationary incompressible Navier–Stokes equations based on the velocity–pressure–vorticity first-order

system. However, no detailed numerical results were reported. Surana and co-workers [15,16] presented

numerical results for the stationary incompressible Navier–Stokes stress based first-order system using a

p-version least-squares formulation based on a modal basis derived from equispaced Lagrange polynomials.

Here we consider the numerical solution of the stationary incompressible and low-speed compressible
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Navier–Stokes equations using either a vorticity/heat flux or velocity gradient/heat flux based first-order

system. We make use of the nodal and modal expansions for quadrilateral elements described by War-

burton et al. [17].

The paper is organized as follows. In Section 2, we present the least-squares formulation for the Poisson

equation and, via numerical examples, demonstrate spectral convergence of the L2 least-squares functional

and L2 error norms. We give details on the finite element model and the nodal/modal expansions used

throughout the paper. In Section 3, we present the least-squares formulation for the stationary incom-

pressible Navier–Stokes equations. We focus attention on the vorticity and the velocity gradient based first-
order systems and verify spectral convergence using the Kovasznay flow solution. We present results for the

two-dimensional flow over a backward-facing step, discuss the modeling of outflow boundary conditions,

and compare results with the benchmark solution of Gartling [18]. Next, we consider flow past a circular

cylinder at low Reynolds number and compare the predicted surface pressure distribution with experi-

mental measurements of Grove et al. [19]. To demonstrate the capabilities of the algorithm for large-scale

problems, we present results for the three-dimensional lid-driven cavity flow and compare results with

published data of Jiang et al. [20]. In Section 4, we consider the stationary low-speed compressible Navier–

Stokes equations. We present results for compressible buoyant flow inside a square enclosure and compare
results with the benchmark solution of Yu et al. [21].
2. The Poisson equation

Let �XX be the closure of an open bounded region X in Rn, where n ¼ 2 or 3 represents the number of space

dimensions, and x ¼ ðx1; . . . ; xnÞ ¼ ðx; y; zÞ be a point in �XX ¼ X [ oX, where oX ¼ C is the boundary of X.
We consider the solution of the Poisson equation, which can be stated as follows.

Find /ðxÞ such that

�r2/ ¼ f in X; ð1Þ
/ ¼ /s on C/; ð2Þ
n̂n � r/ ¼ qsn on Cq; ð3Þ

where C ¼ C/ [ Cq and C/ \ Cq ¼ ;, f is the source term, n̂n is the outward unit normal on the boundary of

X, /s is the prescribed value of / on the boundary C/, and qsn is the prescribed normal flux on the boundary
Cq.

Although direct application of the least-squares variational principle to the Poisson equation is possible,

it will result in an impractical least-squares finite element model as we would be required to work with

continuously differentiable finite element spaces. Moreover, the resulting condition number of the corre-

sponding discrete problem would be much higher compared with the condition number resulting from

application of the weak form Galerkin method to the same problem. We proceed instead by first replacing

the Poisson problem, Eqs. (1)–(3), with its first-order system equivalent.

Find /ðxÞ and uðxÞ such that

�r � u ¼ f in X; ð4Þ
r/� u ¼ 0 in X; ð5Þ
r� u ¼ 0 in X; ð6Þ
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/ ¼ /s on C/; ð7Þ
n̂n � u ¼ qsn on Cq; ð8Þ

where u is a vector valued function whose components are the fluxes of /, defined in Eq. (5). For n ¼ 2 (the

two-dimensional case) we may also specify t̂t � u ¼ t̂t � r/sðxÞ on C/, where t̂t is the unit tangent on the
boundary of X. Similarly for n ¼ 3, we may specify t̂t1 � r/sðxÞ and t̂t2 � r/sðxÞ on C/, where t̂t1 and t̂t2 are

unit tangent vectors on the boundary of X. Eq. (6) is a curl constraint to ensure H 1-coercivity of the system

[7].
2.1. L2 least-squares formulation

For sP 0, we use the standard notation and definition for the Sobolev spaces HsðXÞ and HsðCÞ with

corresponding inner products denoted by ð�; �Þs;X and ð�; �Þs;C and norms by k � ks;X and k � ks;C, respectively.
Whenever there is no chance of ambiguity, the measures X and C will be omitted from inner product and

norm designations. We denote the L2ðXÞ and L2ðCÞ inner products by ð�; �Þ and ð�; �ÞC, respectively. ByH
sðXÞ

we denote the product space ½HsðXÞ�n. We denote by H 1
0 ðXÞ the space consisting of H 1ðXÞ functions that

vanish on the boundary C and by �LL2ðXÞ the space of all square integrable functions with zero mean with

respect to X.
The L2 least-squares functional associated with the equivalent first-order system of the Poisson problem

is

Jð/; u; f Þ ¼ 1

2
k
�

�r � u� f k20 þ kr/� uk20 þ kr � uk20
�
: ð9Þ

Considering homogeneous boundary data, the least-squares principle for functional (9) can be stated

as

Find ð/; uÞ 2 X such that for all ðw; vÞ 2 X

Jð/; u; f Þ6Jðw; v; f Þ; ð10Þ

where we use the space

X ¼ ð/; uÞ 2 H 1ðXÞ
n

�H1ðXÞ /jC/

��� ¼ 0; n̂n � ujCq
¼ 0
o
:

It is easy to see that the Euler–Lagrange equation for this minimization problem is given by the following

variational problem [2]:

Find ð/; uÞ 2 X such that for all ðw; vÞ 2 X

Bðð/; uÞ; ðw; vÞÞ ¼ Fððw; vÞÞ; ð11Þ

where

Bðð/; uÞ; ðw; vÞÞ ¼
Z
X
ð�r � uÞ ð�r � vÞ dXþ

Z
X
ðr/� uÞ � ðrw� vÞ dXþ

Z
X
ðr � uÞ � ðr � vÞ dX

and
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Fððw; vÞÞ ¼
Z
X
f ð�r � vÞ dX:

2.2. Finite element model

The finite element model is obtained by either restricting (11) to the finite dimensional subspace Xhp of

the infinite dimensional space X, or equivalently by minimizing (9) with respect to the chosen approxi-

mating spaces. Then the least-squares discrete finite element model for the Poisson equation is given by the

following discrete variational problem:

Find ð/hp; uhpÞ 2 Xhp such that for all ðwhp; vhpÞ 2 Xhp

Bðð/hp; uhpÞ; ðwhp; vhpÞÞ ¼ Fððwhp; vhpÞÞ: ð12Þ

We proceed to define a discrete problem by choosing appropriate finite element subspaces for / and each of

the components of the vector valued function u ¼ ðu; v;wÞ. There are no restrictive compatibility conditions
on the discrete spaces, so we choose the same finite element subspace for each of the primary variables. The

only requirement on the approximating spaces is that we choose continuous piecewise polynomials that are

at least bi-linear (in two dimensions) or tri-linear (in three dimensions).

Consider the two-dimensional case and let Ph ¼ fQg be a family of quadrilateral finite elements �XXe that

make up the connected model �XXh. We map �XXe to a bi-unit square X̂Xe ¼ ½�1; 1� � ½�1; 1�, where

n ¼ ðn1; n2Þ ¼ ðn; gÞ is a point in X̂Xe. Over a typical element X̂Xe, we approximate / by the expression

/ðn; gÞ � /hpðn; gÞ ¼
Xn
j¼1

Djujðn; gÞ in X̂Xe: ð13Þ

In a modal expansion, uj are tensor products of the one-dimensional C0 p-type hierarchical basis

wiðnÞ ¼

1�n
2
; i ¼ 1;

1�n
2

� �
1þn
2

� �
P a;b
p�2; 26 i6 p; pP 2;

1þn
2
; i ¼ p þ 1

8><
>: ð14Þ

and Dj are coefficients associated with each of the modes of the hierarchical basis. In definition (14), P a;b
p are

the Jacobi polynomials of order p. We use ultraspheric polynomials corresponding to the choice a ¼ b with

a ¼ b ¼ 0 or 1.

In a nodal expansion, uj are tensor products of the one-dimensional C0 spectral nodal basis

hiðnÞ ¼
ðn� 1Þðnþ 1ÞL0

pðnÞ
pðp þ 1ÞLpðniÞðn� niÞ

ð15Þ

and Dj are nodal values due to the Kronecker delta property of the spectral basis. In Eq. (15), Lp ¼ P 0;0
p is

the Legendre polynomial of order p and ni denotes the location of the roots of ðn� 1Þðnþ 1ÞL0
pðnÞ ¼ 0 in

the interval ½�1; 1�. Details on the multidimensional construction of both the modal and nodal expansions
can be found in [1].

We approximate the components of the vector valued function u ¼ ðu; vÞ in similar manner as we did for

/ in Eq. (13) and proceed to generate a system of linear algebraic equations at the element level using Eq.

(12). The integrals in Eq. (12) are evaluated using Gauss quadrature rules. In our implementation the

Gauss–Legendre rules are used for both the modal and nodal expansions, and full integration is used to

evaluate the integrals.
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The global system of equations is assembled from the element contributions using the direct stiffness

summation approach. The assembled system of equations can be written as

½K11� ½K12� ½K13�
½K12�T ½K22� ½K23�
½K13�T ½K23�T ½K33�

0
B@

1
CA fD1g

fD2g
fD3g

0
@

1
A ¼

fF 1g
fF 2g
fF 3g

0
@

1
A;

where fD1g, fD2g, fD3g are the modal/nodal unknown coefficients associated with /, u, and v. For details
on standard finite element methods, such as mapping �XXe ¢ X̂Xe, numerical integration in X̂Xe, and assembly

using the direct stiffness summation approach, see [22,23].

2.3. Numerical example

Consider the case where �XX ¼ ½�1; 1� � ½�1; 1�. Fig. 1 shows the connected model �XXh, where the set fQg
consists of four quadrilateral finite elements �XXe.

We seek a function /ðx; yÞ satisfying the Poisson problem subject to the boundary conditions (see Fig. 1)

o/
oy

¼ v ¼ 0 on Ca;

/ ¼ /sðyÞ on Cb;

o/
oy

¼ v ¼ 0 on Cc;

o/
ox

¼ u ¼ qsðyÞ on Cd :

The functions f ðx; yÞ, /sðyÞ, and qsðyÞ are chosen such that the analytical solution /ðx; yÞ is

/ðx; yÞ ¼ ð7xþ x7Þ cosðpyÞ:

We use the modal expansions for quadrilateral elements based on the ultraspheric Jacobi polynomials with

weights equal to zero, i.e., the Legendre polynomials. The resulting linear system of equations with a SPD

coefficient matrix is solved using Cholesky factorization. In Fig. 2, we plot the L2 least-squares functional
Fig. 1. A uniform mesh of four elements is shown on the bi-unit square on which the Poisson problem is defined.



Fig. 2. Decay of the least-squares functional and convergence of the primary variables to the exact solution of the Poisson problem in

the L2-norm.

530 J.P. Pontaza, J.N. Reddy / Journal of Computational Physics 190 (2003) 523–549
ðJÞ and the L2 error of the three primary variables ð/; u; vÞ as a function of the expansion order in a

logarithmic-linear scale. Exponentially fast decay (spectral convergence) of the L2 least-squares functional

and L2 errors is observed, i.e., doubling the degrees of freedom per direction results in more than two orders
of magnitude reduction in discretization errors.
3. The incompressible Navier–Stokes equations

We consider the solution of the stationary Navier–Stokes equations governing incompressible flow,

which in dimensionless form can be stated as follows:

Find the velocity uðxÞ and pressure pðxÞ such that

ðu � rÞuþrp � 1

Re
r � ðruÞ
h

þ ðruÞT
i
¼ f in X; ð16Þ
r � u ¼ 0 in X; ð17Þ
u ¼ us; on Cu; ð18Þ
n̂n � r ¼ fs on Cf ; ð19Þ

where C ¼ Cu [ Cf and Cu \ Cf ¼ ;, Re is the Reynolds number, r ¼ �pIþ 1=Re ½ðruÞ þ ðruÞT�, f is a

dimensionless force, n̂n is the outward unit normal on the boundary of X, us is the prescribed velocity on the

boundary Cu, and fs are the prescribed tractions on the boundary Cf . We assume that the problem is well

posed and that a unique solution exists.
In situations where outflow boundary conditions need to be modeled, the Navier–Stokes equations in the

r2u form are preferred [24]. In such cases, (using the incompressibility constraint given in Eq. (17)) we

would drop the ðruÞT term in Eq. (16), and the boundary conditions in Eq. (19) would then become
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n̂n � ~rr ¼ ~ffs on Cf ; ð20Þ

where ~rr is a pseudo-stress, ~rr ¼ �pIþ ð1=ReÞru, and ~ffs are the prescribed pseudo-tractions on the

boundary Cf .
3.1. The vorticity based first-order system

Introducing the vorticity vector, x ¼ r� u, then by making use of the vector identity

r�r� u ¼ �r2uþrðr � uÞ

and in view of the incompressibility constraint given in Eq. (17), the stationary Navier–Stokes equations,

Eqs. (16)–(19), can be replaced by their first-order system equivalent:

Find the velocity uðxÞ, pressure pðxÞ, and vorticity xðxÞ such that

ðu � rÞuþrp þ 1

Re
r� x ¼ f in X; ð21Þ
x�r� u ¼ 0 in X; ð22Þ
r � u ¼ 0 in X; ð23Þ
r � x ¼ 0 in X; ð24Þ
u ¼ us on Cu; ð25Þ
x ¼ xs on Cx: ð26Þ

The seemingly redundant equation (24) is needed in the three-dimensional case to make the system of

equations uniformly elliptic [7]. Typically Cu \ Cx ¼ ;, i.e., if velocity is specified at a boundary, vorticity

need not be specified there. Outflow boundary conditions are treated through the least-squares functional

and will be discussed in Section 3.3.2.
3.1.1. L2 least-squares formulation

The L2 least-squares functional associated with the velocity–pressure–vorticity formulation is given by

Jðu; p;x; fÞ ¼ 1

2
ðu � rÞu
����
 

þrp þ 1

Re
r� x� f

����
2

0

þ kx�r� uk20 þ kr � uk20 þr � xk20

!
: ð27Þ

This L2 functional does not define an equivalent norm in H 1ðXÞ when augmented by a pure velocity

boundary condition (C ¼ Cu). As we show later by numerical examples, in practice, the formulation per-

forms exceptionally well and seems to be unaffected by this departure from the ideal mathematical setting.
Considering the homogeneous pure velocity boundary condition case, the least-squares principle for

functional (27) can be stated as

Find ðu; p;xÞ 2 X such that for all ðv; q;wÞ 2 X

Jðu; p;x; fÞ6Jðv; q;w; fÞ; ð28Þ

where we use the space
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X ¼ ðu; p;xÞ 2 H1
0ðXÞ

n
� H 1ðXÞ \ �LL2ðXÞ �H1ðXÞ

o
:

The Euler–Lagrange equation for this minimization problem is given by the following variational problem:

Find ðu; p;xÞ 2 X such that for all ðv; q;wÞ 2 X

Bððu; p;xÞ; ðv; q;wÞÞ ¼ Fððv; q;wÞÞ; ð29Þ

where

Bððu; p;xÞ; ðv; q;wÞÞ ¼
Z
X

ðu � rÞu
�

þrpþ 1

Re
r�x

�
� ðv � rÞv
�

þrqþ 1

Re
r�w

�
dX

þ
Z
X
ðx�r� uÞ � ðw�r� vÞ dXþ

Z
X
ðr � uÞ ðr � vÞ dXþ

Z
X
ðr �xÞ ðr � wÞ dX

and

Fððv; q;wÞÞ ¼
Z
X
f � ðv � rÞv
�

þrqþ 1

Re
r� w

�
dX:
3.1.2. Finite element model

The finite element model is obtained by either restricting (29) to the finite dimensional subspace Xhp of

the infinite dimensional space X, or equivalently by minimizing (27) with respect to the chosen approxi-

mating spaces. Then the least-squares discrete finite element model for the incompressible Navier–Stokes

equations is given by the following discrete variational problem:

Find ðuhp; php;xhpÞ 2 Xhp such that for all ðvhp; qhp;whpÞ 2 Xhp

B uhp; php;xhp
� �

; vhp; qhp;whp
� �� �

¼ F vhp; qhp;whp
� �� �

: ð30Þ

We proceed to define a discrete problem by choosing appropriate finite element subspaces for the velocity,

pressure, and vorticity. There are no restrictive compatibility conditions on the discrete spaces, so we

choose the same finite element subspace for all primary variables. Following the procedure outlined for the

Poisson problem, we generate a system of equations for the modal/nodal unknown coefficients associated

with velocity, pressure, and vorticity. Once the discrete problem is obtained, it is then linearized by

Newton�s method.
3.2. The velocity gradient based first-order system

To define the first-order velocity–pressure–velocity gradient system, we introduce all components of the

gradient of the velocity vector field as independent variables. Viewing the n-vector functions as column
vectors and the new n2-vector functions as either block column vectors or matrices, using the notation of

[9], we define the velocity gradients, U, as follows:

U ¼ rðuÞT:

In terms of U, the stationary Navier–Stokes equations, Eqs. (16)–(19), can be replaced by their first-order

system equivalent:

Find the velocity uðxÞ, pressure pðxÞ, and velocity gradients UðxÞ such that

ðu �UÞT þrp � 1

Re
ðr �UÞT ¼ f in X; ð31Þ
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U�rðuÞT ¼ 0 in X; ð32Þ
r � u ¼ 0 in X; ð33Þ
r�U ¼ 0 in X; ð34Þ
rðtrUÞ ¼ 0 in X; ð35Þ
u ¼ us on Cu; ð36Þ
Uij ¼ Us
ij on CU ; ð37Þ

where trU ¼
Pn

i¼1 Uii. For n ¼ 2 (the two-dimensional case) we may also specify t̂t �U ¼ t̂t � rðusðxÞÞT on Cu,

where t̂t is the unit tangent on the boundary of X. Similarly, for n ¼ 3, we may specify t̂t1 � rðusðxÞÞT and

t̂t2 � rðusðxÞÞT on Cu, where t̂t1 and t̂t2 are unit tangent vectors on the boundary of X.
This first-order decomposition is the vector equivalent to that of the Poisson problem. The seemingly

redundant equations (34) and (35) are needed to make the system achieve H 1-coercivity [9,13]. The L2 least-

squares formulation and finite element model proceed in a similar manner as that described for the vorticity
based first-order system and are not detailed here.

3.3. Numerical examples

In the following, we present numerical results obtained with the proposed formulation. The problems

have been selected to assess the predictive capabilities of the vorticity and velocity gradient based finite

element models. We start by verifying spectral convergence of the numerical algorithm using and exact

solution to the Navier–Stokes equations. Next, we consider the steady two-dimensional flow of incom-

pressible fluid over a backward-facing step and around a circular cylinder. In the last example, we consider

the three-dimensional lid-driven cavity problem.

3.3.1. Kovasznay flow

We consider two-dimensional, steady flow in �XX ¼ ½�0:5; 1:5� � ½�0:5; 1:5�. We use Kovasznay�s solution
[25] to the stationary incompressible Navier–Stokes equations to verify spectral convergence of the nu-

merical algorithm. The solution is given by

u ¼ 1� ekx cosð2pyÞ; v ¼ k
2p

ekx sinð2pyÞ; p ¼ p0 �
1

2
e2kx;

where k ¼ Re=2� ðRe2=4þ 4p2Þ1=2 and p0 is a reference pressure (an arbitrary constant). Fig. 3(a) shows u-
velocity contours of the exact solution for Re ¼ 40. Fig. 3(b) shows the discretization of the domain using a

non-uniform mesh of eight quadrilateral finite elements �XXe.
The incompressible Navier–Stokes equations in the vorticity based first-order form is used to develop the

finite element model. Nodal expansions (spectral elements) are used to obtain the discrete model. The exact

solution is used to prescribe Dirichlet velocity boundary conditions on C and pressure is specified at a point.

No boundary conditions for the vorticity are necessary. The discrete system was linearized using Newton�s
method and the resulting linear algebraic system of equations with a SPD coefficient matrix solved using

Cholesky factorization at each Newton step. Nonlinear convergence was declared when the relative norm of

the residual in velocities, kDuhpk=kuhpk, was less than 10�4, which typically required five Newton iterations.

In Fig. 4 we plot the L2 least-squares functional and L2 error of the velocity, pressure, and vorticity fields as



Fig. 4. Decay of the least-squares functional and convergence of the velocity, pressure, and vorticity fields to the exact Kovasznay

solution in the L2-norm. Nodal expansion.

Fig. 3. Kovasznay flow: (a) u-velocity contours of the exact solution for Re ¼ 40; (b) computational domain using eight quadrilateral

elements.
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a function of the expansion order in a logarithmic-linear scale. Even though functional (27) defines a non-

equivalent formulation for the pure velocity boundary condition, spectral convergence of the L2 least-

squares functional and L2 error is observed. Spectral convergence was also verified when modal expansions

were used to obtain the discrete model.

We perform the same analysis for the incompressible Navier–Stokes equations in the velocity gradient

based first-order form using modal expansions. This system leads to a L2 least-squares functional that

defines an equivalent norm in H 1ðXÞ. In Fig. 5 we plot the L2 least-squares functional and L2 error of the

velocity, pressure, and velocity gradient fields as a function of the expansion order in a logarithmic-linear



Fig. 5. Decay of the least-squares functional and convergence of the velocity, pressure, and velocity gradient fields to the exact

Kovasznay solution in the L2-norm. Modal expansion.
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scale. Spectral convergence of the L2 least-squares functional and L2 error is observed. Spectral convergence

was also verified when nodal expansions were used to obtain the discrete model.

Both the non-equivalent and norm-equivalent formulations achieve spectral convergence. Clearly, the fact

that functional (27) is not H 1-norm equivalent and hence defines a non-equivalent formulation for the pure

velocity boundary condition case; does not imply that the method is not optimal. It simply means that the

optimality of the resulting method cannot be established a priori using standard elliptic theory. Similar

observations were reported by Proot and Gerrtisma [26], for non-equivalent and norm-equivalent formu-
lations, when verifying spectral convergence for the vorticity based first-order Stokes equations.

Considering the convergence rate and accuracy of the numerical solution, both the vorticity and velocity

gradient based first-order systems yield similar results. In terms of computer memory requirements and

CPU solve time (using Cholesky factorization), the vorticity based first-order system is preferred because it

has fewer degrees of freedom. For n ¼ 2 (the two-dimensional case) the vorticity first-order decomposition

introduces only one component of the vorticity vector as an additional variable, whereas the velocity

gradient first-order decomposition introduces four additional variables: oui=oxj, i; j ¼ 1; 2. For n ¼ 3 the

vorticity first-order decomposition introduces the three components of the vorticity vector as additional
variables, whereas the velocity gradient first-order decomposition introduces nine additional variables:

oui=oxj, i; j ¼ 1; 2; 3. A cost comparison between the vorticity and velocity gradient based formulation for

the Kovasznay problem is illustrated in Fig. 6, by plotting the L2 error of the velocity field as a function of

the total number of degrees of freedom in a logarithmic-linear scale. Clearly, the vorticity based formu-

lation is preferred because, for a given number of degrees of freedom, it allows for a more accurate solution

at higher p-levels.

3.3.2. Flow over a backward-facing step

We consider two-dimensional, steady flow over a backward-facing step at Re ¼ 800. The geometry and

boundary conditions are taken from the benchmark solution of Gartling [18] and are shown in Fig. 7. As

shown in Fig. 7 the standard step geometry was simplified by excluding the channel portion upstream of the
step. The boundary conditions for the step geometry include the no-slip condition at all solid surfaces and a



Fig. 7. Geometry and boundary conditions for flow over a backward-facing step.

Fig. 6. Convergence of the velocity field to the exact Kovasznay solution in the L2-norm for the vorticity and velocity gradient based

first-order systems. Nodal expansion.
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parabolic inlet velocity profile given by uðyÞ ¼ 24yð0:5� yÞ for 06 y6 0:5. The Reynolds number is based

on the mean inlet velocity.

The outflow boundary condition is of relevance in the context of the least-squares finite element for-

mulation and is discussed in the following. Instead of imposing an outflow boundary condition in a strong
sense we impose it in a weak sense through the least-squares functional. For example, if we use the vorticity

based first-order system the L2 least-squares functional is now

Jðu; p;x; fÞ ¼ 1

2
ðu � rÞu
����
 

þrp þ 1

Re
r� x� f

����
2

0

þ kx�r� uk20 þ kr � uk20 þ kr � xk20

þ kn̂n � ~rr� ~ffsk20;Coutflow

!
; ð38Þ

where ~rr is a pseudo-stress (see Eq. (20)), ~rr ¼ �p Iþ ð1=ReÞru, and ~ffs are the prescribed pseudo-tractions,

typically taken to be zero at an outflow boundary. The strong outflow boundary condition p ¼ 0 for the
vorticity based first-order system or p ¼ 0, ov=on ¼ 0 for the velocity gradient based first-order system also
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give good results. However, we prefer the weak imposition of outflow boundary conditions through the

least-squares functional as it allows for more freedom in their modelling.

We discretize the domain, �XX ¼ ½0; 30� � ½�0:5; 0:5�, using 20 finite elements: two elements along the

height of the channel and 10 uniformly spaced elements along the length of the channel. The numerical

simulation is performed using the two-dimensional incompressible Navier–Stokes equations in the vor-

ticity based first-order form. We use a 11th order modal expansion in each element and linearize the

resulting discrete model (having a total of 10,212 degrees of freedom) using Newton�s method. At each

Newton step, the linear system of equations with a SPD coefficient matrix is solved using the conjugate
gradient method with a symmetric Gauss–Seidel preconditioner; see [27]. Convergence of the conjugate

gradient method was declared when the norm of the residual was less than 10�6. Nonlinear convergence

was declared when the relative norm of the residual in velocities, kDuhpk=kuhpk, was less than 10�4, which

typically required four Newton iterations. The analysis starts with Re ¼ 100 and steps to Re ¼ 800 using

a solution continuation technique with increments of Re ¼ 100. Away from the corner of the step

at ðx; yÞ ¼ ð0; 0Þ, the L2 least-squares functional remained below 10�5 through the Reynolds number

stepping.

Fig. 8 shows the streamlines, the vector velocity field, and pressure contours for 06 x6 10, where most
of the interesting flow structures occur. The flow separates at the step corner and forms a large recirculation

region with a reattachment point on the lower wall of the channel at approximately x ¼ 6. A second re-

circulation region forms on the upper wall of the channel beginning near x ¼ 5 with a reattachment point at

approximately x ¼ 10:5.
Fig. 9 shows u-velocity profiles along the channel height at x ¼ 7 and x ¼ 15. We compare with tabulated

values from the benchmark solution of Gartling [18] and find excellent agreement. Gartling�s benchmark

solution is based on a mixed weak form Galerkin formulation using discretizations ranging from 6� 120 to

40� 800 bi-quadratic elements, corresponding to discrete systems of 8426 to 355,362 degrees of freedom,
respectively. Fig. 10 shows pressure profiles along the length of the channel walls. The slopes of the pressure

profiles become constant near the exit plane, meaning that the flow has recovered to fully developed

conditions at the exit.

In Fig. 11 we present the convergence history of the preconditioned conjugate gradient (PCG) method

using a Jacobi preconditioner and a symmetric Gauss–Seidel preconditioner. The algebraic set of equations

being solved corresponds to the 11th order modal expansion discrete model (having a total of 10,212
Fig. 8. Flow over a backward-facing step at Re ¼ 800: (a) streamlines, (b) vector velocity field, and (c) pressure field. Modal expansion

of order 11 using two elements along the height and 10 uniformly spaced elements along the entire length of the channel.



Fig. 10. Flow over a backward-facing step at Re ¼ 800: pressure profiles along lower and upper walls of the channel.

Fig. 9. Flow over a backward-facing step at Re ¼ 800: horizontal velocity profiles along the height of the channel at x ¼ 7 and x ¼ 15.

Comparison with the benchmark solution of Gartling [18].
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degrees of freedom) and flow conditions of Re ¼ 800. We plot the convergence history corresponding to

each of the four Newton iterations, after which the nonlinear tolerance is achieved. The number of PCG

iterations reduces during the nonlinear iteration procedure because a continuation technique is used with

respect to the nonlinear loop, i.e., the last converged solution is used as an initial guess for the PCG solver.
As expected, the Gauss–Seidel preconditioner gives a higher convergence rate. It should be noted, however,

that to apply the Gauss–Seidel preconditioner the assembled system of equations needs to be stored, this is



Fig. 11. Convergence history of the conjugate gradient (CG) solver using a Jacobi and a Gauss–Seidel preconditioner: (a)–(d) cor-

responding to Newton iterations 1–4, for an 11th order modal expansion and flow conditions of Re ¼ 800 in the channel.
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not the case for the Jacobi preconditioner. For three-dimensional problems the cost of applying a Gauss–

Seidel preconditioner might be high in terms of computer memory. Similar convergence rates and accuracy

were observed for the velocity gradient formulation, although at higher CPU solve times due to having

additional degrees of freedom.

3.3.3. Flow past a circular cylinder at low Reynolds number

We next consider the two-dimensional flow of an incompressible fluid past a circular cylinder. The

Reynolds numbers considered here are 20 and 40, for which a steady-state solution exists. The cylinder is of

unit diameter and is placed in the finite region �XX ¼ ½�15:5; 30:5� � ½�20:5; 20:5�. The center of the cylinder
lies at ðx; yÞ ¼ ð0; 0Þ, so that the inflow boundary is located 15.5 cylinder diameters in front of the center of

the cylinder and the outflow boundary 30.5 cylinder diameters downstream of the center of the cylinder.

The top and bottom boundaries are located each 20.5 cylinder diameters above and below the center of the
cylinder. The Reynolds number is based on the free-stream velocity and cylinder diameter.



Fig. 12. Computational domain and mesh for flow past a circular cylinder: (a) connected model, �XXh; (b) close-up view of the geometric

discretization around the circular cylinder.
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Having considered a large computational domain allows us to impose free-stream boundary conditions

at the top and bottom of the domain without noticeably affecting the solution. The boundary conditions
include a specified value of 1.0 for the x-component of velocity at the inflow, top, and bottom boundaries,

i.e., the free-stream velocity u1 is specified to be unity. At these boundaries the y-component of velocity is

set to zero. The outflow boundary conditions are imposed in a weak sense through the least-squares

functional.

The connected model, �XXh, consists of 501 finite elements and is shown in Fig. 12, where a close-up view

of the geometric discretization around the circular cylinder is also shown. In the previous examples a

subparametric formulation using a linear basis for the mapping, �XXe ¢ X̂Xe, was sufficient to exactly rep-

resent the straight-sided geometries. In order to accurately represent the circular surface, we implement an
isoparametric formulation; i.e., we use the same expansion order for the element degrees of freedom and for

the mapping, �XXe ¢ X̂Xe.

We use the two-dimensional incompressible Navier–Stokes equations in the vorticity based first-order

form and a sixth-order nodal expansions in each element, resulting in a discrete model with a total of 73,344

degrees of freedom. We note that, for large two-dimensional or three-dimensional computations, storage of

the assembled system of equations in banded or in compressed sparse row/column format may become

prohibitively expensive in terms of computer memory. We therefore have to resort to matrix-free tech-

niques, also known as element-by-element solution algorithms, and implement a matrix-free version of the
conjugate gradient method with a Jacobi preconditioner. The Gauss–Seidel preconditioner cannot be ap-

plied in a matrix-free setting, as it requires storage of the lower and upper parts of the assembled system of

equations to perform the preconditioning step. It is necessary to emphasize that the matrix-free conjugate

gradient algorithm with a Jacobi preconditioner does not require the assembly of a global matrix, not even

an element matrix, which leads to tremendous savings in computer memory; and if implemented properly,

considerable solve time speed-ups.

At each Newton step the (SPD) linear system of equations is solved using the matrix-free conjugate

gradient algorithm with a Jacobi preconditioner. Convergence of the conjugate gradient method was de-
clared when the norm of the residual was less than 10�6. Nonlinear convergence was declared when the

relative norm of the residual in velocities between two consecutive iterations was less than 10�4, which

required six Newton iterations. The L2 least-squares functional remained below 10�6 for the flow conditions

considered.



Fig. 13. Flow past a circular cylinder at Re ¼ 20 and 40: computed pressure coefficient distributions along the cylinder surface.

Comparison with experimental measurements of Grove et al. [19] for the case Re ¼ 40.
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Fig. 13 shows the computed surface pressure coefficient distributions along the cylinder surface for

Re ¼ 20 and 40, together with experimental measurements of Grove et al. [19] for the case Re ¼ 40. We

observe that the simulation result is in good agreement with the experimental measurements. The computed

drag coefficients for flow conditions of Re ¼ 20 and 40 were CD ¼ 2:0862 and 1.5537, respectively. Good

agreement is found between the computed drag coefficients and the experimental mean curve of Tritton

[28], where the corresponding values are CD ¼ 2:05 and 1.56.

Fig. 14 shows computed pressure contours and streamlines in the wake region for Re ¼ 20 and 40. The
predicted wake extends 1.86 and 4.55 cylinder radii measured from the back of the cylinder, respectively.
Fig. 14. Flow past a circular cylinder at (a) Re ¼ 20 and (b) 40: pressure contours and streamlines in the wake region.
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The values for the wake lengths are in good agreement with the numerical solution of Dennis and Chang

[29], whose computed wake lengths for Re ¼ 20 and 40 were reported as 1.88 and 4.69 cylinder radii, re-

spectively. Better agreement for the case Re ¼ 40 is found with the numerical solution of Kawaguti and Jain

[30], who reported a computed wake length of 4.50 cylinder radii. Like in the previous example, similar

accuracy was observed for the velocity gradient formulation, although at higher CPU solve times due to

having additional degrees of freedom.

3.3.4. Lid-driven cavity flow

Next, we consider the three-dimensional flow of an incompressible fluid bounded in a cubic enclosure,
�XX ¼ ½0; 1� � ½0; 1� � ½0; 1�, where the flow is driven by the translation of the top boundary. The connected

model, �XXh ¼ ½0; 1� � ½0; 1� � ½0; 0:5�, using 6� 6� 3 brick finite elements, �XXe, is shown in Fig. 15. It has been

established that, up to Re ¼ 3200, the flow is symmetric about the plane z ¼ 0:5 [31,20]. We therefore model
only half the domain.

The Reynolds numbers considered here are 100 and 400, for which it has been well established that a

steady-state solution exists. We perform the analysis using the three-dimensional incompressible Navier–

Stokes equations in the vorticity based first-order form, for which there are a total of seven primary

variables: three velocity components, pressure, and three vorticity components. The boundary conditions

are as follows: u ¼ v ¼ w ¼ 0 on all solid walls, p ¼ 0 at a point, w ¼ xx ¼ xy ¼ 0 on the symmetry plane

(z ¼ 0:5), and u ¼ usðx; zÞ, v ¼ w ¼ 0 on the top driven surface (y ¼ 1:0). On the driven surface we specify a

hyperbolic tangent u-velocity distribution: us ¼ gðxÞgðzÞ, where

gðsÞ ¼ tanhðbsÞ 06 s6 0:5;
� tanhðbðs� 1ÞÞ 0:5 < s6 1:0

	

with b > 0. Here we take b ¼ 50, which gives a smooth but at the same time sharp transition from u ¼ 0:0
to u ¼ 1:0 near the walls of the driven surface.
Fig. 15. Computational domain and mesh for the three-dimensional lid-driven cavity problem. Due to symmetry about the plane

z ¼ 0:5, only half the domain is modeled.
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We use a fifth-order nodal expansion in each element, resulting in a discrete model with a total of

107,632 degrees of freedom. The velocity gradient based first-order system was not considered in this study

for the solution of three-dimensional flow conditions, as it is significantly more expensive than the vorticity

based first-order system. For the discretization considered here, the resulting velocity gradient based dis-

crete model would have a total of 199,888 degrees of freedom. Which, based on results from the two-di-

mensional numerical examples, would yield equally accurate results when compared to the vorticity-based

formulation.

At each Newton step the (SPD) linear system of equations is solved using the matrix-free conjugate
gradient algorithm with a Jacobi preconditioner. Convergence of the conjugate gradient method was de-

clared when the norm of the residual was less than 10�6. Nonlinear convergence was declared when the
Fig. 16. Velocity vectors, vorticity, and pressure contours on plane z ¼ 0:5 for Re ¼ 400.

Fig. 17. Velocity vectors, vorticity, and pressure contours on planes x ¼ 0:5 and y ¼ 0:5 for Re ¼ 400.



Fig. 18. Profiles of u-velocity along the vertical mid-line of the plane z ¼ 0:5. Comparison with tabulated values from the published

results of Jiang et al. [20].
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relative norm of the residual in velocities was less than 10�4, which typically required six Newton iterations.

The analysis starts with Re ¼ 100 and steps to Re ¼ 400 using a solution continuation technique with in-

crements of Re ¼ 100. The L2 least-squares functional remained below 10�3 for the flow conditions con-

sidered.
Fig. 16 shows velocity vectors, vorticity contours , and pressure contours on the plane z ¼ 0:5 for

Re ¼ 400. On this plane, we see the primary re-circulation region which looks similar to the well documented

two-dimensional solution. Fig. 17 show the solution on the planes x ¼ 0:5 and y ¼ 0:5. We see a pair of

vortices at the bottom wall of the plane x ¼ 0:5 and a weak pair of vortices near the top wall. On the plane

y ¼ 0:5 we see vortices on the side-wall of the cavity. Fig. 18 shows u-velocity profiles along the vertical mid-

line of the plane z ¼ 0:5, our results are in good agreement with tabulated data from published results of

Jiang et al. [20]. Jiang and co-workers used a least-squares finite element formulation with an almost uniform

50� 52� 25 mesh with tri-linear elements and reduced integration, i.e., one point quadrature.
4. The low-speed compressible Navier–Stokes equations

We consider the solution of the Navier–Stokes equations governing compressible flow. Since we are

interested in low-speed flows, the pressure distribution is rather uniform. We consider pressure as composed

of small variations p0 and a uniform background pressure �pp, i.e., p ¼ �pp þ p0, where �pp ¼ q1RT1. The

background pressure can be dropped from the spatial derivatives and the pressure variation is non-
dimensionalized by a reference kinetic energy q1U

2
1. The governing equations in dimensionless form can be

written as

Find the density qðxÞ, velocity uðxÞ, pressure p0ðxÞ, and temperature T ðxÞ such that

ðu � rÞqþ qðr � uÞ ¼ 0 in X; ð39Þ
qðu � rÞuþrp0 � 1

Re
r � ðruÞ
h

þ ðruÞT
i
þ 2

3

1

Re
rðr � uÞ ¼ f þ 1

2 �Fr
qð�k̂kÞ in X; ð40Þ
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qðu � rÞT � 1

Pe
r2T � ðc� 1ÞM2 ðu � rÞp0 ¼ ðc� 1ÞM2

Re
U� ðc� 1ÞM2

2�Fr
q k̂k � u in X; ð41Þ
1þ cM2 p0 ¼ qT in X; ð42Þ

where M is the Mach number, Fr is the Froude number, Pr is the Prandtl number, Re is the Reynolds
number, Pe is the Peclet number, c is the ratio of specific heats, and we assume gravity acts in the �k̂k

direction. The temperature difference parameter � is defined as � ¼ ðTh � TcÞ=ðTh þ TcÞ, where Th and Tc are
the specified hot and cold temperatures in a thermal convection problem. We assume appropriate boundary

conditions are given and that a unique solution exists.

For low-speed flows (M < 0:3), the pressure term, the viscous dissipation term, and the buoyancy term in

the energy equation (Eq. (41)) become negligible. Furthermore, according to the equation of state (Eq.

(42)), the density and temperature become reciprocal. The resulting equations describe anaelastic flow

conditions, where acoustic phenomena is removed while still allowing for buoyancy and inertial effects of
variable density; see [32]. Yu et al. [21] used vorticity, dilatation, and heat flux to reduce the low-speed

compressible Navier–Stokes equations to a first-order system. Here we present a velocity gradient/heat flux

first-order system.
4.1. The velocity gradient/heat flux based first-order system

Introducing the gradient of the velocity vector field and temperature field as independent variables, the

low-speed compressible Navier–Stokes first-order system equivalent in dimensionless form can be written as:

Find the density qðxÞ, velocity uðxÞ, pressure p0ðxÞ, velocity gradients UðxÞ, temperature T ðxÞ, and heat

flux qðxÞ such that

ðu � rÞqþ qðtrUÞ ¼ 0 in X; ð43Þ
qðu �UÞT þrp0 � 1

Re
ðr �UÞT � 1

3

1

Re
rðtrUÞ ¼ f þ 1

2 �Fr
q ð�k̂kÞ in X; ð44Þ
U�rðuÞT ¼ 0 in X; ð45Þ
r�U ¼ 0 in X; ð46Þ
qðu � rÞT þr � q ¼ 0 in X; ð47Þ
qþ 1

Pe
rT ¼ 0 in X; ð48Þ
r� q ¼ 0 in X; ð49Þ
q ¼ 1

T
in X: ð50Þ

We proceed by using the reciprocal relation between temperature and density to eliminate density from the

system of equations. The L2 least-squares formulation and finite element model proceed in a similar manner

as described for the Poisson and incompressible Navier–Stokes equations.
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4.2. Numerical example: buoyancy-driven flow inside a square enclosure

We consider two-dimensional, steady, buoyancy-driven gas flow in a square enclosure. The square en-

closure is taken to be the unit square, �XX ¼ ½0; 1� � ½0; 1�. The connected model �XXh using 6� 6 quadrilateral

finite elements, �XXe, is shown in Fig. 19. Boundary conditions are also shown in Fig. 19 and consist of two

insulated horizontal walls and two vertical walls at different temperatures, Th and Tc.
Flow features depend on the Rayleigh number, Froude number, aspect ratio of the enclosure, and the

temperature difference parameter �. The Rayleigh number and the Reynolds number are related through

Re ¼ ðRaFr=PrÞ1=2. Here we consider Rayleigh numbers 103, 104, 105 with � ¼ 0:6, i.e., Th=Tc ¼ 4. For the

Rayleigh numbers considered here, a fifth-order nodal expansion in each element is sufficient. The discrete
model is linearized using Newton�s method and at each Newton step the resulting (SPD) algebraic problem

solved using the conjugate gradient method with a symmetric Gauss–Seidel preconditioner. Convergence of

the conjugate gradient method was declared when the norm of the residual was less than 10�7. Nonlinear

convergence was declared when the relative norm of the solution vector was less than 10�4, which typically

required four Newton iterations. The L2 least-squares functional remained below 10�5 for the three flow

conditions considered.

Fig. 20 shows streamlines of the flow field and velocity profiles along the horizontal and vertical

mid-lines of the the enclosure for the three Rayleigh numbers. The open circles in Fig. 20 are tabulated
data from the benchmark solution of Yu et al. [21] for the same flow conditions. We see excellent

agreement between our solution and the benchmark solution. Yu and co-workers used a least-squares

finite element formulation, and introduced vorticity, dilatation, and heat flux to reduce the low-speed

compressible Navier–Stokes equations to a first-order system. They used bi-quadratic elements and

reduced integration with grid systems ranging from 33� 33 to 129� 129 elements. The first-order system

used by Yu and co-workers was also implemented and found to give equally accurate results at

significantly lower CPU solve times, having only vorticity and heat fluxes as additional degrees of

freedom.
Fig. 19. Geometry, mesh, and boundary conditions for buoyancy-driven gas flow inside a square enclosure.



Fig. 20. Streamlines of the flow field and velocity profiles along the horizontal and vertical mid-lines of the enclosure for: (a) Ra ¼ 103,

(b) Ra ¼ 104, and (c) Ra ¼ 105. (—) fifth-order nodal expansion, (�) Yu et al. [21].
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5. Concluding remarks

In this paper we presented the formulation, validation, and application of spectral/hp least-squares finite

element methods for the Navier–Stokes equations. Spectral convergence of the L2 least-squares functional

and L2 error norms were verified using smooth solutions to the Poisson equation and the Kovasznay flow
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solution to the incompressible Navier–Stokes equations. For practical implementation of the least-squares

finite element formulation, the Navier–Stokes equations were reduced to an equivalent first-order system by

introducing the vorticity vector or the gradient of the velocity vector field as additional primary variables.

Outflow boundary conditions were imposed in a weak sense through the least-squares functional. Nu-

merical results for incompressible flow over a backward-facing step, steady flow past a circular cylinder,

three-dimensional lid-driven cavity flow, and low-speed compressible buoyant flow inside a square enclo-

sure were presented and found to be in excellent agreement with benchmark solutions.

Predominantly low order nodal expansions have been used to develop discrete finite element models of
the Navier–Stokes equations by least-squares finite element formulations. Low order nodal expansions

have been found to lock for non-equivalent formulations and reduced integration is needed to yield ac-

ceptable numerical results. In our experience with reduced integration, we have found that the resulting

assembled matrix is nearly singular. Furthermore, the numerical solution may not be smooth at the nodes

and post-processing is needed to recover nodal values from the reduced integration points.

In this paper we made use of full integration throughout, with no post-processing of the numerical

solution. The quality of the numerical solution was judged by the value of the L2 least-squares functional,

which was shown to decay exponentially fast as the expansion order of the element nodal/modal basis is
increased. With regard to computational cost and efficiency, the assembled system of equations are solved

in a fully coupled manner by the preconditioned conjugate gradient method using a Gauss–Seidel or Jacobi

preconditioner. For large two-dimensional or three-dimensional problems a conjugate gradient matrix-free

algorithm with a Jacobi preconditioner is used. The element-by-element nature of the algorithm naturally

allows for its parallelization. The vorticity based first-order systems were found to give equally accurate

results when compared to the velocity gradient based first-order systems, at significantly lower CPU solve

times due to having introduced fewer additional degrees of freedom. We may thus conclude that, for the

incompressible and low-speed compressible Navier–Stokes equations, the vorticity based formulations are
the most efficient.

Extension of the formulation to the non-stationary Navier–Stokes equations [33] and viscous com-

pressible flows for subsonic/transonic flow conditions are the subjects of forthcoming papers.
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